THE CONFORMATIONAL ANALYSIS OF ACROLEIN

Robert L. Lipnick*

Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455

(Received in USA 18 August 1972; received in UK for publication 6 February 1973)

Studies by microwave,¹ ultrasonic relaxation,² X-ray,³ nmr,⁴ and raman and infrared⁵ indicate that acrolein exists as a mixture of <u>trans</u> and <u>cis</u> conformers, with the former predominating at room temperature. While the major <u>trans</u> conformer is coplanar (l_a), it is not known whether the minor conformer is coplanar (l_b) or skewed (l_c , l_d).

In this study, the temperature-dependences of the averaged conformer nmr parameters have been measured for acrolein- \underline{d}_2 (6) at 13 temperatures over a range of 175.6°, and these parameters related to changes in conformer population.

Acrolein- \underline{d}_2 was prepared according to the scheme outlined in Figure 1. Ethyl 3,3-diethoxypropionate (2) was prepared from sodium ethoxide and ethyl propiolate (Aldrich) using the method of Ingold,⁶ b.p. 93°/17 mm (lit. 93°/22 mm). Reduction of 2 with LiAlD₄ in ether gave 3,3-diethoxypropanol- \underline{d}_2 (3) in 69% yield, b.p. 99-102°/18 mm (lit. 98°/20 mm).⁷ Tosylation of 3 with p-toluenesulfonyl chloride in anhydrous pyridine afforded 3,3-diethoxypropanol- \underline{d}_2 tosylate (4), an uncrystallizable oil, in 84% yield. The tosylate (4) underwent facile elimination with potassium t-butoxide (100% molar excess) in anhydrous dimethyl sulfoxide at room temperature to 3,3-diethoxypropene- \underline{d}_2 (5), b.p. 121-123° (lit. 123.5°).⁸ Acrolein- \underline{d}_2 (6) was prepared from 5 by acetal exchange in n-heptaldehyde containing a catalytic amount of p-toluenesulfonic acid.⁹

All spectra were obtained from a sealed 5 mm sample tube containing 1.07% (m/m) acrolein- \underline{d}_2 (> 99% by glpc) and 0.48% (m/m) hexamethyldisilane (HMDS) (> 99% by glpc) in Reagent CS₂, stabilized by the addition of a small crystal of hydroquinone.

The deuterium-decoupled spectrum of § consists of two equally-spaced doublets, corresponding to the aldehyde (H_A) and olefinic (H_B) protons. At each temperature, 16-22 HMDS sideband-calibrated spectra were recorded for each doublet,¹⁰ yielding line frequencies relative to HMDS, whose standard deviations ranged 0.02-0.06 Hz, with an average value of 0.03 Hz. At all temperatures, the two doublets were well-separated, and all nmr parameters were obtained from a direct first-order analysis. The vicinal coupling, J_{AB} , was derived from the average of the two doublet separations. Table 1 shows the experimental values for v_A , v_B , and J_{AB} at 13 temperatures.

Temperature ^a	v A	v _B ^b	JAB
69.8	568.80	374.28	7.37
54.5	568.67	374.35	7.46
39.5	568.47	374.45	7.58
38.5	568,55	374.49	7.56
29.5	568.48	374.54	7.60
15.6	568.32	374.63	7.68
-0.9	568.02	374.79	7.76
-17,5	567,92	374.86	7.78
-37.8	567.55	375.01	7.88
-60.0	567.12	375.25	7.94
-72.5	566.79	375.37	7.99
-82.5	566.56	375.53	8.06
-105.2	565.82	375.81	8.06

a) In °C; accurate to ±1°. b) In Hz from HMDS. c) In Hz.

These parameters, in addition to the derived parameters $(\nu_A - \nu_B)$ and $(\nu_A + \nu_B)$, were used in an attempt to determine $\Delta \underline{H}$ for the equilibrium $\underline{\lambda}\underline{a} \rightleftharpoons \underline{\lambda}\underline{b}$ ($\underline{\lambda}\underline{c}$, $\underline{\lambda}\underline{d}$) by iterative solution of eq. 2 where $\underline{\underline{P}}_{aj}$ and $\underline{\underline{P}}_{bj}$ are the j^{th} of $\underline{\underline{\ell}}$ intensive parameters of conformers $\underline{\underline{l}}_{a}$ and $\underline{\underline{l}}_{b}$,

$$\ln \left(\frac{\underline{\underline{P}}_{\underline{aj}} - \underline{\underline{P}}_{\underline{ij}}^{o}}{\underline{\underline{P}}_{\underline{ij}}^{o} - \underline{\underline{P}}_{\underline{bj}}} \right) = \frac{-\Delta \underline{\underline{H}}}{\underline{\underline{RT}}_{\underline{ij}}} + \frac{\Delta \underline{\underline{S}}}{\underline{\underline{R}}}$$
(2)

respectively; $\underline{\underline{P}}_{\underline{ij}}^{0}$ is the \underline{j}^{th} of $\underline{\underline{\ell}}$ observed parameters at the $\underline{\underline{i}}^{th}$ of $\underline{\underline{k}}$ temperatures, $\underline{\underline{T}}_{\underline{ij}}$.¹¹ Solution of eq. 2 varying all of the unknowns was not achieved for any of the above parameters.

solution of eq. 2 varying all of the unknowns was not achieved for any of the above parameters. Consequently, it was necessary to reduce the number of unknowns by one by holding ΔS fixed at either 0 or R in 2 $(1.376)^{12}$ e.u., corresponding qualitatively to either one <u>planar</u> (1b), or two skew enantiomers (1c, 1d) for the minor conformer.

This treatment led to solution of eq. 2 for three parameter sets: ν_A , $(\nu_A - \nu_B)$, and J_{AB} . Both ν_B and $(\nu_A - \nu_B)$ yielded solution values of $\Delta \underline{H}$ which differ appreciably from literature values (even in algebraic sign for one)¹³ and whose percent probable errors were greater than expected from similar measurements.¹⁴ As J_{AB} yielded a solution value of $\Delta \underline{\underline{H}}$ (Table 2) in accord with previous measurements (1.7,^{5a} 2.06,² and 2.5^{1b} kcal./mole) and gave rise to a probable error in $\Delta \underline{\underline{H}}$ of only 6.5%, this parameter was retained for further consideration and the others discarded. The values of $\Delta \underline{\underline{\underline{H}}}$ and $(\underline{J}_{AB})_a$ are insensitive to $\Delta \underline{\underline{S}}$, and therefore have been accurately determined.

Table 2

Solution Parameters^a of Equation 1 Using Temperature-dependences of J_{AB} at Fixed Values of ΔS for Equation 2

Solution	$\Delta \underline{S}^{\mathbf{b}}$ (Fixed)	∆ <u>H</u> c	$(\underline{J}_{AB})_{\underline{a}}$	$(\underline{J}_{AB})_{\underline{b}}$	RMS
1	0	1864±122	8.11±0.02	-3.67±1.85	0.021
2	1.376	1942±115	8.10±0.02	1.24±0.98	0.022

a) All nmr parameters are given in Hz. Subscripts a and b denote nmr parameters calculated for the trans and cis conformers, respectively. \pm figures denote probable errors. b) In cal/(mole deg). c) In cal/mole.

The value of $(\underline{J}_{AB})_b$ (-3.67 ± 1.85 Hz) found for $\Delta \underline{S} = 0$ corresponding to one planar conformation, 1b, is in poor agreement with the best theoretical estimate (2.4 Hz) for <u>cis</u>acrolein.¹⁵ However, the solution value (+1.24 ± 0.98 Hz) found if $\Delta \underline{S}$ is held constant at 1.376, corresponding to two skewed enanciomers, is in good agreement with this theoretical estimate. Figure 2 shows the experimental and calculated temperature-dependences of \underline{J}_{AB} for solution 2. The apparent nonplanarity of acrolein can be explained by large torsional, steric, and/or electrostatic energy contributions to the total torsional potential,^{5c} and is similar to the result found for <u>cis</u>-butadiene.^{14a}

Acknowledgment: The author is grateful to the National Science Foundation for Grant No. GP-3815 which provided support for this work, and to Dr. Edgar W. Garbisch, Jr. for helpful discussions.

FIGURE 2. The experimental (\bullet) and theoretical (solid line) temperature dependence of J_{AB} . The theoretical dependence is derived from solution 2 of eq. 2.

References and Footnotes

- * Correspondence may be directed to R.L.L., 53 Winthrop Road, Brookline, Massachusetts 02146.
- (a) C. E. Cherniak and C. C. Costain, <u>J. Chem. Phys.</u>, <u>45</u>, 104 (1966); (b) R. Wagner, J. Fine, J. W. Simmons, and J. H. Goldstein, <u>J. Chem. Phys</u>., <u>26</u>, 634 (1957).
- 2. M. S. De Groot and J. Lamb, Proc. Roy. Soc. (London), A242, 36 (1957).
- 3. K. Kuchitsu, T. Fukuyama, and Y. Morino, J. Mol. Struct., 1, 463 (1967-68).
- 4. (a) A. W. Douglas and J. H. Goldstein, J. Mol. Spectros., 16, 1 (1965); (b) J. E. D. Davies, J. Mol. Spectros., 29, 499 (1969).
- (a) S. Dzhessati, V. I. Tyulin, and V. M. Tatevskii, <u>Vestr. Mosk. Univ</u>., Ser. II 22 (2), 14-19 (1967), see <u>C.A.</u> 68, 109587b; (b) R. K. Harris, <u>Spectrochim. Acta</u>, 20, 1129 (1964); (c) W. G. Fateley, R. K. Harris, F. A. Miller, and R. E. Witkowsky, <u>Spectrochim. Acta</u>, 21, 231 (1965).
- 6. E. H. Ingold, <u>J. Chem. Soc.</u>, <u>127</u>, 1199 (1925).
- 7. A. Wohl and W. Emmerich, Ber., 33, 2760 (1900).
- 8. A. Wohl, <u>Ber</u>., <u>31</u>, 1796 (1898).
- 9. All of the synthetic intermediates and their nondeuterated analogs gave nmr spectra that were in agreement with the assigned structures.
- The modified A-60 nmr spectrometer and experimental method have been described previously in reference 13-a.
- For a detailed discussion of the scope and limitations of this method, see E. W. Garbisch, Jr., B. L. Hawkins, and K. D. MacKay, in "Conformational Analysis: Scope and Present Limitations", E. Chiurdogu, Ed., pp. 93-110, Academic Press, New York, 1971.
- 12. The entropy of mixing is normally used for such a case.
- 13. Solution values at $\Delta S = 0$: $\Delta H = 691 \pm 66$ cal/mole (v_B) and -62 ± 87 cal/mole $(v_A v_B)$. The unreliability of solution values of ΔH obtained from chemical shift data is consistent with the erratic concentration dependence of chemical shift reported for acrolein in reference 4a and ascribed to head to tail dimer equilibrium.
- 14. (a) The Conformational Analysis of 1,3-butadiene, R. L. Lipnick and E. W. Garbisch, Jr., J. Amer. Chem. Soc., 95, 0000 (1973). (b) the Conformational Analysis of 4,4-Dimethyl-1-pentene, P. B. Woller and E. W. Garbisch, Jr., J. Amer. Chem. Soc., 94, 0000 (1972).
- 15. A. A. Bothner-By and R. K. Harris, <u>J. Org. Chem</u>., 30, 254 (1965).